
A COMPREHENSIVE STUDY ON INTEGRATION OF SEGMENTATION AND ENHANCEMENT APPROACHES FOR ROBUST FINGER VEIN RECOGNITION

V. Vathsala^{*1}, Dr. K. Pazhanikumar²

¹Research Scholar (Registration Number: 23113152282008), Department of Computer Science and Research Centre,S.T.Hindu College, Nagercoil- 629002, Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli- 627012, TamilNadu, India.

²Assiatant Professor, Head of the Department of Computer Science and Research Centre, S.T.Hindu College, Nagercoil- 629002, Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli- 627012, TamilNadu, India.

Article Received: 23 September 2025

***Corresponding Author: V. Vathsala**

Article Revised: 13 October 2025

Research Scholar (Registration Number: 23113152282008), Department of Computer Science and Research Centre,S.T.Hindu College, Nagercoil- 629002, Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli- 627012, TamilNadu, India.

ABSTRACT

Finger vein recognition's excellent security, internal feature uniqueness, and forgery resistance have made it a potential biometric identification method. However, successful vein pattern segmentation and augmentation are crucial for obtaining reliable and accurate detection. The segmentation and augmentation techniques currently used in finger vein recognition systems are thoroughly reviewed in this work. Traditional image processing techniques, machine learning algorithms, and new deep learning-based models that enhance vein visibility, contrast, and boundary localization are all methodically examined in this work. To emphasize their influence on recognition performance, a number of preprocessing techniques are also covered, such as region of interest (ROI) extraction, illumination correction, and noise reduction. Furthermore, the paper examines the benefits and limits of various strategies, focusing on their integration to improve feature quality and recognition robustness. The integration of segmentation and improvement techniques to increase the accuracy and resilience of finger vein recognition systems is the main goal of this thorough review. For precise vein pattern extraction, a variety of segmentation methods are investigated, such as thresholding, region-based, and deep learning-based models. Additionally included are enhancing techniques like deep learning-based picture

augmentation, Gabor filtering, and contrast-limited adaptive histogram equalization. This analysis emphasizes the need of integrating segmentation and enhancement algorithms to produce excellent recognition performance under a variety of imaging situations by examining recent developments and obstacles. Finally, the study discusses current problems, such as unpredictability in imaging circumstances, dataset limits, and computational complexity, and suggests new research avenues for constructing adaptive, hybrid, and real-time finger vein detection frameworks.

KEYWORDS: Finger Vein Recognition, Vein Enhancement, Vascular Biometrics, Finger Vein Identification And Segmentation.

I.INTRODUCTION

Finger vein recognition's intrinsic, distinct, and impenetrable characteristics have made it a safe and dependable biometric identification method. Finger vein patterns are collected using near-infrared (NIR) imaging, which ensures more privacy and resistance to imitation compared to exterior features like fingerprints or facial photos. However, attaining high recognition accuracy is frequently severely hampered by differences in illumination, finger posture, and image quality [1]. Finger vein identification has drawn a lot of interest recently as a trustworthy biometric verification method because of its high security, individuality, and spoofing resistance. Finger vein patterns are internal, imperceptible to the unaided eye, and consistent over the course of a person's life, in contrast to outward biometric characteristics like fingerprints or facial features. Finger vein recognition is therefore ideal for use in identity verification, banking, and security access control systems. However, the quality of the photos taken and the precision of vein pattern extraction play a major role in how well finger vein recognition systems work [2]. Variations brought on by poor contrast, motion blur, finger misalignment, and uneven illumination can significantly impair recognition performance. Segmentation and enhancement are essential preprocessing techniques for finger vein images in order to overcome these difficulties. The goal of segmentation techniques is to precisely separate the vein patterns in the ROI from the surrounding tissues and background. Modern deep learning architectures like U-Net and Attention U-Net, which offer accurate and adaptive segmentation, have supplemented traditional techniques like thresholding, morphological operations, and region-based segmentation [2]. However, enhancing techniques make vein patterns more visible and contrasted, which increases the efficiency of feature extraction. Vein pattern clarity has been shown to be significantly improved by

techniques like CLAHE (Contrast-Limited Adaptive Histogram Equalization), Gabor filtering, and deep learning-based image enhancement algorithms. In the preprocessing phase of finger vein recognition, segmentation and augmentation are essential for resolving these problems. While enhancement increases image contrast and vein visibility, segmentation concentrates on precisely identifying the region of interest (ROI) that houses the vein patterns. Combining these two methods makes vein extraction more accurate and increases the recognition system's overall resilience. This thorough investigation examines a number of conventional and deep learning-based segmentation and enhancement methods, emphasizing how well they work together to improve performance in a range of imaging scenarios[3]. The paper also covers current developments, obstacles, and potential paths for creating trustworthy and effective finger vein recognition systems.

1.1 Progress and Trends in Deep Learning Architectures

Deep learning research has grown fast over the last decade, altering how machines learn and interpret information. The creation of novel architectures has been critical in delivering cutting-edge performance across a wide range of applications, including image recognition, speech processing, medical diagnostics, and natural language understanding[4].

Early research concentrated on Convolutional Neural Networks (CNNs), which revolutionized computer vision applications by incorporating spatial feature extraction and hierarchical learning [5]. Subsequent advances in Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks improved their ability to model sequential and temporal data, resulting in breakthroughs in speech and text interpretation(7).

As the discipline advanced, researchers began examining ever-more-complex deep learning methods to overcome the inherent challenges of medical picture analysis:

Ensemble Learning: To increase predictive power and robustness, some studies combined predictions from multiple CNN models using ensemble learning approaches [4 & 5]. By leveraging the diversity of individual models, this strategy reduces the likelihood of overfitting and improves overall accuracy. [8].

The prevalence of Transformer-based architectures, which employ self-attention methods to manage long-range dependencies more effectively than RNNs, is highlighted by recent research trends [6]. With an emphasis on scalability and generalization, models like BERT, GPT, and Vision Transformers (ViT) have raised the bar for both language and vision tasks.

In order to automate model design and lessen the need for manual adjustment, researchers are also investigating Neural Architecture Search (NAS). In order to facilitate deep learning on edge devices, there is also a lot of emphasis on models that are lightweight and energy-efficient, such as Mobile Net and Efficient Net. Explainable AI (XAI) to improve model transparency, multimodal learning to integrate many data sources, and Graph Neural Networks (GNNs) for structured data are examples of emerging directions.

When taken as a whole, these patterns show that deep learning architectures are evolving toward more resource-efficient, interpretable, and adaptive models that meet the increasing needs of practical AI applications.

In order to facilitate deep learning on devices with limited resources, recent research has focused on efficient and lightweight architectures such as Mobile Net, Shuffle Net, and Efficient Net. Neural Architecture Search (NAS) has also drawn interest due to its ability to automate the design process and find the best network topologies.

Deep learning's capacity to manage intricate data structures and multi-modal tasks is further enhanced by the emergence of Graph Neural Networks (GNNs) and Vision Transformers (ViTs). In order to advance sustainability, privacy, and transparency, explainable AI (XAI), energy-efficient computing, and federated learning are also becoming more and more important. All things considered, current developments in deep learning architecture design show a move toward more responsible, intelligent, and adaptable AI systems that can handle problems in the real world.

Together, these methodological and architectural developments enable deep learning to continue progress by offering dependable and adaptable solutions to a variety of real-world issues.

Healthcare: Deep learning is offering personalized and privacy-preserving healthcare solutions, ranging from predictive models to image-based illness diagnostics

1.2 Mitigating the Limitations of Finger Vein Recognition through Advanced Deep Learning Methods.

A promising biometric technique for secure personal identification is finger vein recognition, which makes use of the distinct vascular patterns under the skin. Nevertheless, the system has

a number of drawbacks, such as inferior image quality brought on by changes in blood flow, skin thickness, finger orientation, and illumination.

Under these difficult circumstances, it is frequently difficult for conventional image processing and machine learning algorithms to extract trustworthy characteristics. Advanced deep learning techniques have been developed to address these problems, allowing for better vein pattern augmentation, noise reduction, and automatic feature extraction. Convolutional Neural Networks (CNNs), U-Net, and attention-based models are examples of deep architectures that efficiently capture complex vein structures and improve image clarity, resulting in more reliable recognition performance.

Furthermore, the system's capacity to generalize across various users and imaging contexts is enhanced by Siamese networks and transfer learning techniques. Deep learning-based solutions greatly reduce the drawbacks of conventional methods by combining segmentation, augmentation, and classification into a single framework. This leads to improved accuracy, versatility, and dependability in finger vein detection systems.

Despite being extremely safe and challenging to create, finger vein recognition is hindered by a number of technical issues that compromise its dependability and efficiency. Poor image quality, which is frequently brought on by changes in blood flow, finger thickness, and illumination during image acquisition, is one of the main difficulties. It is challenging to identify distinct vein patterns when there is little difference between the veins and the surrounding tissues.

Inconsistencies in the recorded data are also caused by fingers rotating and misaligning while scanning. Image clarity is further reduced by noise, blurring, and occlusion brought on by skin disorders or sensor limitations.

Conventional image processing techniques are unable to adequately address these issues. Deep learning models, on the other hand, have become effective ways to get over these obstacles. Deep learning makes it possible for automatic feature extraction, reliable segmentation, and adaptive learning in a variety of scenarios by utilizing sophisticated architectures including Convolutional Neural Networks (CNNs), Attention U-Nets, and Siamese networks.

These models solve many of the technical issues that have long hampered accurate finger vein detection performance by improving image quality, lowering noise, and increasing matching accuracy.

II. SEGMENTATION OF FINGER VEIN IMAGES THROUGH ACTIVE CONTOUR MODELS

Finger vein detection is strongly dependent on correct segmentation of vein patterns from collected photos. However, finger vein images frequently suffer from low contrast, noise, uneven illumination, and variations in finger posture, making segmentation a difficult process [9]. Active contour models (ACMs), also known as snake models, offer a reliable solution by growing a curve to meet the boundaries of vein patterns in an image. The model iteratively adapts the contour based on picture gradients and energy minimization principles, allowing it to cope with complex vein forms and local variations.

In finger vein segmentation, ACMs are very successful at recognizing tiny and curved vein features that typical thresholding or edge detection approaches may overlook. Variants include gradient-based snakes, region-based snakes, and level set approaches improve segmentation accuracy by combining both local and global picture data [10]. Active contour-based segmentation increases the efficacy of following procedures such as feature extraction, matching, and biometric verification because it properly delineates venous structures. Overall, ACMs offer a flexible and dependable solution to the issues of finger vein image segmentation.

2.1 An Overview of Active Contour Models for Robust Finger Vein Segmentation

Finger vein recognition is a secure and dependable biometric approach that involves precisely extracting vascular patterns from finger photographs. However, these images frequently offer problems such as low contrast, noise, uneven illumination, and finger misalignment, complicating segmentation. Active Contour Models (ACMs), often known as snakes, are frequently utilized to overcome these challenges because they can adapt to intricate and curved venous systems [11].

ACMs work by iteratively developing a contour to minimize an energy function that includes internal forces (ensuring the contour's smoothness and continuity) and exterior forces (pushing the contour toward image features such as vein borders). Variants include gradient-

based snakes, region-based snakes, and level set techniques improve resilience by combining local edge information with global region features.

After segmentation, post-processing techniques such as morphological operations and skeletonization are frequently used to modify vein patterns, preparing them for feature extraction and matching.

Overall, active contour-based segmentation offers a flexible, adaptable, and accurate solution to robust finger vein recognition, improving biometric systems' reliability and performance.

2.2 Function of Active Contour Models in Finger Vein Segmentation

The major goal of employing Active Contour Models (ACMs) in finger vein segmentation is to accurately and reliably extract vascular patterns from finger pictures, which serve as unique biometric features for authentication and identification. Finger vein images frequently face issues such as low contrast, noise, uneven illumination, finger misalignment, and skin imperfections, rendering typical segmentation approaches ineffective. ACMs address these issues by offering a flexible and adaptable framework that can accommodate the complicated, curved shapes of vein patterns.

2.2.1 Key purposes

Precise Vein Boundary Detection: ACMs evolve a contour to properly outline vein structures, collecting small features required for recognition. Noise and Artifact Handling: By focusing on energy reduction, ACMs can limit the impact of noise and irrelevant features, hence improving segmentation quality. Adaptability to Variations: ACMs respond dynamically to changes in finger position, orientation, and illumination, ensuring consistent segmentation across photos. Support for Complex Vein Patterns: Advanced versions such as level set methods enable the model to handle branching, splitting, and merging veins more efficiently. Improved Recognition Accuracy[12]: By creating clear, continuous vein maps, ACMs increase the performance of future steps in biometric systems such as feature extraction and matching.

III. WORKFLOW OF FINGER VEIN SEGMENTATION PROCESSING

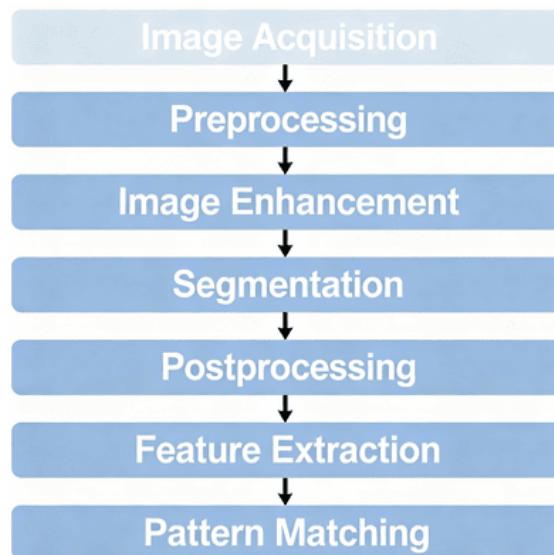


Figure 1. Finger Vein Image Processing Stages.

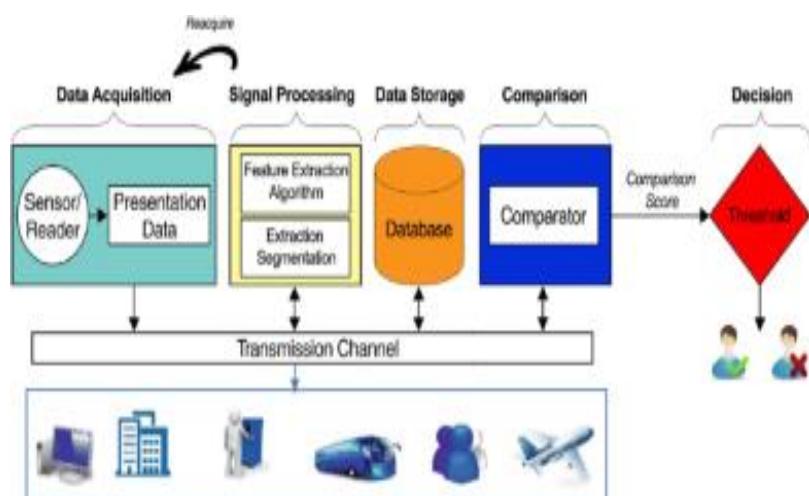


Figure 2: Illustrates the overall process and working stages of a finger vein authentication system.

The process begins with a unique sensor that includes an infrared light source and a finger guidance device. When the user places a finger on the device, infrared light travels through it. Hemoglobin in the blood vessels absorbs light, causing the vein structure to look dark. This creates the finger vein appearance [13].

The cross-sectional figure depicts how transmitted infrared light interacts with veins, while the sample image shows a person placing their finger on the sensor for scanning.

Finger vein images are recorded and transferred to the authentication system for digital processing.

Pattern Extraction: The system extracts and enhances the vein pattern from the collected image to produce a clear, binary vein map.

Database Storage: The extracted vein pattern is saved in a finger vein database as a reference after user registration.

Matching: When a user attempts authentication, the system compares the new image's pattern to the previously stored pattern in the database.

Authentication Result: If the matched data has a high enough similarity score, the identity is confirmed and the authentication status is presented as successful.

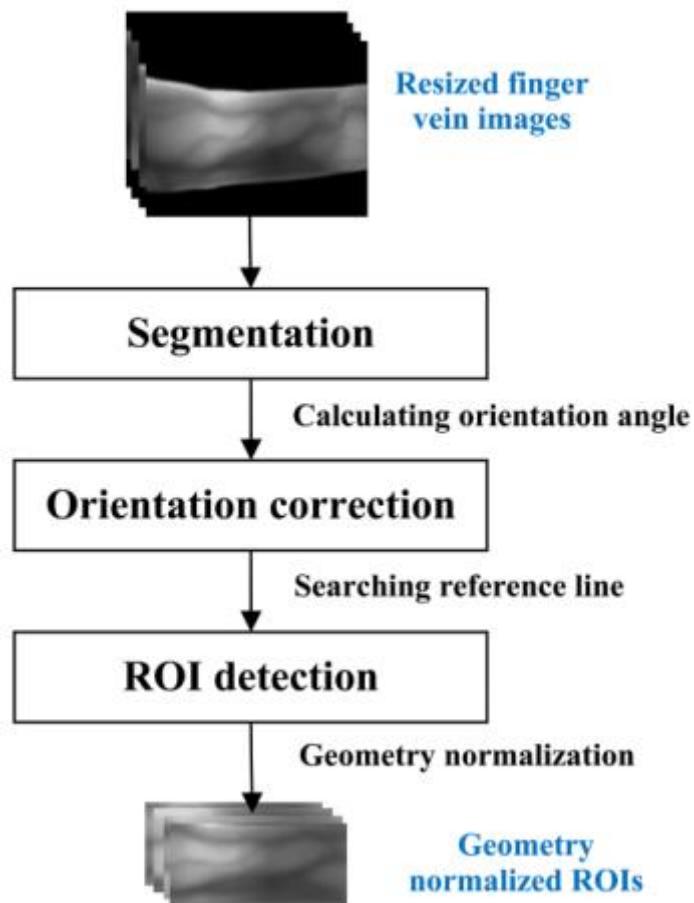


Figure 3: Illustrates the preprocessing workflow of finger vein images.

Resized Finger Vein Pictures: For consistency, the taken pictures are resized to a standard images.

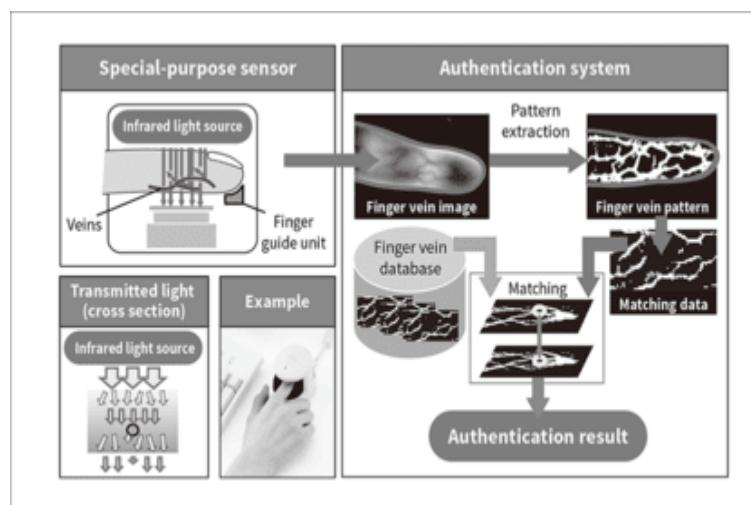
Segmentation: To separate the area of interest, the finger region is separated from the background.

Orientation Correction: By identifying a reference line, the system determines the orientation angle and modifies the image alignment to guarantee the finger is positioned correctly.

ROI detection is the process of identifying the Region of Interest (ROI) that contains the important vein characteristics.

Geometry Normalization: To ensure consistent size and shape across all samples, the extracted ROIs undergo geometric normalization. This creates geometry-normalized ROIs that are prepared for feature extraction and matching.

3.1 Block Diagram of Finger Vein Authentication systems operation Processing Stages



An authentication system and a special-purpose sensor make up its two primary components. An infrared light source that travels through the finger is used by the special-purpose sensor. The vein pattern is visible in the photographed image because the haemoglobin in the veins absorbs infrared light. Correct placement is guaranteed by a finger guidance unit.

After that, the authentication system receives the taken image of the finger vein and uses pattern extraction to create a finger vein pattern.

Through a matching process, this extracted pattern is compared to data that has been saved in the finger vein database.

Database Storage: During enrolment, the extracted vein patterns are saved for comparison in the future in a finger vein database.

Matching and Verification: A freshly recorded pattern is contrasted with pre-stored templates during the authentication process. To ascertain the level of similarity, the system matches.

Authentication Result: The system delivers the authentication result, which verifies whether or not the identity has been validated, based on the matching score.

Lastly, the system outputs an authentication result (either refused or validated) based on the matching result.

3.2 Structural Overview of a Finger Vein Authentication System: Imaging and Image Processing Units.

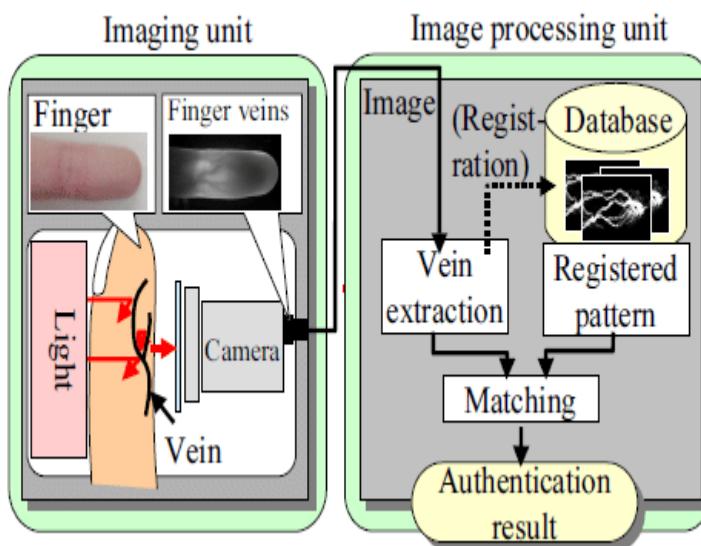


Figure 4: Illustrates a finger vein authentication system, divided into two main parts: the Imaging Unit and the Image Processing Unit.

The Imaging Unit is responsible for obtaining finger vein images. It employs near-infrared (NIR) light sources with a camera or sensor. When a finger is placed on the device, NIR light enters the skin and is absorbed by haemoglobin in the blood, revealing the vein patterns [14]. The camera then catches the interior vein image without being influenced by the exterior skin's texture or colour.

The Image Processing Unit improves and analyses collected images for authentication purposes. This involves pre-processing (noise removal and contrast improvement), segmentation (isolation of vein patterns), feature extraction (identification of unique vein properties), and matching (comparison with database templates).

These devices work together to enable accurate, secure, and contactless identification using a person's finger's unique vascular patterns.

Original Image of a Finger Vein: The imaging equipment used near-infrared light to capture the raw image. Usually, it shows a grayscale picture of a finger with weak veins visible.

Pre-processed image: After performing noise reduction, contrast enhancement, or normalization [13 & 14]. The veins become more visible, and background disturbance is decreased.

Segmented image: The vein region is extracted from the backdrop using a segmentation method such as Active Contour, Thresholding, or U-Net. Only the vein structures are marked, while the rest of the finger area is obscured.

Binary/Mask Representation: A binary picture (black and white) with white pixels representing veins and black pixels representing background.

Overlay Output: The segmented veins are placed on the original image to show the extraction accuracy.



Figure 5: Output Signature of Isolated Resultant Pattern.

3.3.3. Finger Vein Pattern Enhancement Approaches

Finger vein pattern enhancement is an important pre-processing method that improves the visibility and clarity of vein structures before segmentation and recognition. Finger vein photographs frequently have low contrast, inconsistent illumination, and background noise, hence enhancing techniques are used to adequately emphasize the vascular patterns [15]. Common approaches include histogram-based methods like Histogram Equalization and CLAHE, which improve global and local contrast; filtering-based methods like Gabor and matched filters, which highlight vein-like line structures; and Retinex-based methods, which correct illumination variations and improve brightness consistency.

Morphological techniques like top-hat and bottom-hat transformations are also used to highlight narrow vein lines. Deep learning-based techniques, such as Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), have been established in recent years to automatically build optimal improvement maps. Some systems also use fusion-based methods, which combine several enhancing tactics to produce more robust outcomes. Overall, these augmentation strategies increase image quality and assure precise extraction of finger vein characteristics, resulting in effective biometric authentication.

3.3.4. Feature Extraction

A crucial stage in image processing and pattern recognition is feature extraction, which creates a simplified representation of an object or pattern by extracting useful information from raw data. Feature extraction concentrates on capturing the most crucial elements, such as shape, texture, edges, color, or critical spots, rather than using the full image, which could contain unnecessary or superfluous details[7 & 8]. For instance, distinctive line patterns, ridge orientations, or vein structures that set one person apart from another might be features in biometric systems like fingerprint or vein recognition [7]. Convolutional neural networks (CNNs) are one method used in computer vision and deep learning that automatically extracts features like edges in the first layers and more intricate patterns in the deeper layers. Feature extraction boosts the accuracy of classification, recognition.

IV. Integration of Finger Vein Segmentation And Enhancement Process

The integration of finger vein segmentation and improvement procedures is critical for increasing the accuracy and reliability of biometric recognition systems. This integrated approach combines enhancement and segmentation to work in tandem, resulting in high-quality vein extraction even under demanding imaging conditions [16]. The improvement

procedure begins by improving image contrast, removing noise, and highlighting vein structures with techniques such as histogram equalization, Gabor filtering, or Retinex-based correction. This gives a crisper image with more defined vein patterns. The segmentation procedure then accurately separates these improved vein regions from the backdrop using techniques such as active contour models, thresholding, and deep learning networks. By merging both processes, the method ensures that the segmentation is performed on a corrected image, resulting in better vein pattern extraction and reducing errors caused by poor illumination or low contrast. This combination method improves the reliability and precision of finger vein authentication systems.

METRICS USED

The performance of finger vein segmentation and enhancement algorithms is measured using a variety of quantitative criteria that consider both image quality and segmentation accuracy. Metrics such as Contrast-to-Noise Ratio (CNR), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) are frequently used to assess the clarity, contrast improvement, and visual quality of improved images. Entropy and intensity statistics (mean and standard deviation) are also used to assess the richness of features and brightness uniformity following improvement. Accuracy-based metrics are used in segmentation methods to determine how well vein segments are retrieved. These include Accuracy, Precision, Recall (Sensitivity), F1-Score, Dice Similarity Coefficient (DSC), and Jaccard Index (IoU), which assess the overlap and correctness of segmented vein areas to the ground truth. In some biometric evaluations, the False Acceptance Rate (FAR) and False Rejection Rate (FRR) are also employed to determine recognition reliability. Together, these criteria ensure that both the improvement and segmentation processes generate high-quality, accurate, and dependable venous pattern extraction for strong finger vein authentication[17].

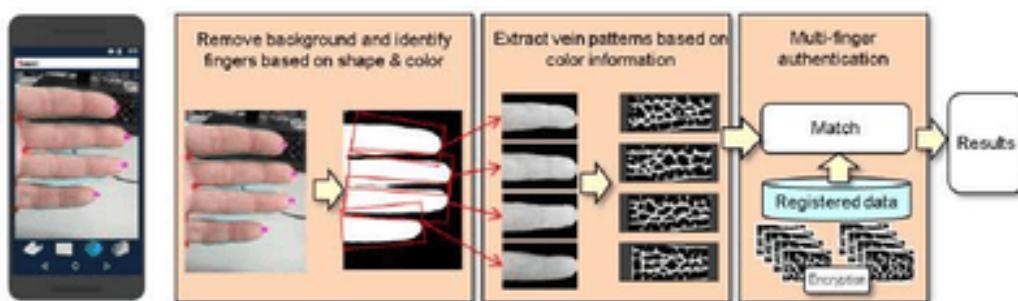


Figure 6: Finger Vein Authentication Framework.

The diagram depicts finger vein authentication has the advantage of using in-vivo properties for biometric identification, making it more difficult to fabricate or spoof than other biometric methods such as fingerprint, facial recognition, or voiceprint. Until now, however, a specific picture sensor using infrared light was required to capture finger vein patterns that are barely visible to the naked eye. The approach developed currently enables highly precise finger vein authentication using the camera inherent into smartphones without a specialized image sensor. More specifically, the system can recognize each finger from a colour image of the user's hand taken with a camera and correctly extract vein pattern information. Combining information from numerous fingers increases authentication accuracy.

V. FUTURE DIRECTIONS AND OPPORTUNITIES

Future research in finger vein segmentation and augmentation will focus on increasing accuracy, adaptability, and real-time performance to strengthen biometric authentication systems. Advanced deep learning and hybrid models have intriguing prospects for automatically improving image quality and segmenting vein patterns under a variety of lighting and skin conditions. The use of multimodal biometrics (finger vein combined with fingerprint or palm vein) can improve security and reliability even further [10]. Furthermore, lightweight and efficient algorithms are being developed for use in portable or embedded devices, allowing real-time computation. The use of transformer-based architectures, self-supervised learning, and explainable AI can result in more robust and transparent systems. Future research may also look into 3D vein imaging and cross-device interoperability in order to overcome sensor and environment variances. Overall, these trends open up numerous prospects for developing more accurate, secure, and user-friendly finger vein recognition technology. Finger vein recognition combined with other biometric modalities, such as fingerprint or iris recognition, allows for more accurate multimodal authentication. With the growth of AI and deep learning, there is an opportunity to create adaptive augmentation and segmentation models that perform efficiently in real time [19]. Additionally, lightweight algorithms and embedded systems enable deployment in mobile and IoT-based applications. Emerging research in 3D vein imaging, cross-sensor matching, and explainable AI broadens the scope of innovation, making finger vein recognition a promising solution for future biometric security systems.

VI.CONCLUSION

Finger vein enhancement and segmentation are key steps in assuring the accuracy, reliability, and resilience of finger vein recognition systems. The enhancement method improves image quality by boosting contrast, lowering noise, and emphasizing vein patterns, and the segmentation process accurately separates these patterns from the backdrop for subsequent feature extraction. Together, they lay the groundwork for accurate and efficient biometric identification [5]. The incorporation of modern techniques—such as deep learning, Retinex models, Gabor filtering, and active contour segmentation—has considerably enhanced the performance of these procedures under a variety of illumination and imaging situations. As research progresses, the emphasis on building adaptive, real-time, and intelligent enhancement-segmentation frameworks promises to improve recognition accuracy and enable more widespread deployment of finger vein systems in secure authentication applications[10]. As research advances, there is a strong emphasis on combining deep learning architectures such as attention-based and lightweight networks to improve accuracy, speed, and robustness in a range of situations. Another exciting opportunity is multimodal biometric systems, in which finger vein detection can be combined with other features like fingerprints, iris, or face recognition to improve security and minimize spoofing problems. With the rise of IoT and edge computing, creating low-power, real-time vein identification systems for mobile and wearable devices will open up new avenues for healthcare monitoring, financial transactions, and smart access management [16]. Furthermore, research into anti-spoofing techniques and privacy-preserving biometric frameworks will be crucial for resolving security and ethical concerns.

REFERENCES

1. Z. Lu, S. Ding, and J. Yin, “Finger vein recognition based on finger crease location,” *Journal of Electronic Imaging*, vol. 25, no. 4, p. 043004, 2016.
2. W. Song, T. Kim, H. C. Kim, J. H. Choi, H.-J. Kong, and S.-R. Lee, “A finger-vein verification system using mean curvature,” *Pattern Recognition Letters*, vol. 32, no. 11, pp. 1541–1547, 2011.
3. H. Qin, X. He, X. Yao, and H. Li, “Finger-vein verification based on the curvature in radon space,” *Expert Systems with Applications*, vol. 82, pp. 151–161, 2017.
4. S. A. Radzi, M. Khalil-Hani, and R. Bakhteri, “Finger-vein biometric identification using convolutional neural network,” *Turkish Journal of Electrical Engineering and Computer Sciences*, vol. 24, no. 3, pp. 1863 1878, 2016.

5. R. Das, E. Piciucco, E. Maiorana, and P. Campisi, “Convolutional neural network for finger-vein-based biometric identification,” *IEEE Transactions on Information Forensics and Security*, vol. 14, no. 2, pp. 360–373, 2018.
6. F. Yuxun, Q. Wu, and W. Kang, “A novel finger vein verification system based on two-stream convolutional network learning,” *Neurocomputing*, vol. 290, 02 2018.
7. Y. Lu, S. Xie, and S. Wu, “Exploring competitive features using deep convolutional neural network for finger vein recognition,” *IEEE Access*, vol. 7, pp. 35113–35123, 2019.
8. H. Qin and M. A. El-Yacoubi, “Deep representation-based feature extraction and recovering for finger-vein verification,” *IEEE Transactions on Information Forensics and Security*, vol. 12, no. 8, pp. 1816–1829, 2017.
9. T. F. Chan and L. A. Vese, “Active contour without edges,” *IEEE Transactions on Image Processing*, vol. 10, no. 2, pp. 266–277, 2001.
10. C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance regularized level set evolution and its application to image segmentation,” *IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society*, vol. 19, no. 12, pp. 3243–3254, 2010.
11. C. Li, R. Huang, Z. Ding, C. Gatenby, D. Metaxas, and J. Gore, “A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity,” *Med Image Comput Comput Assist Interv*, vol. 11, no. 2, pp. 1083–1091, 2008.
12. K. Zhang, H. Song, and L. Zhang, “Active contours driven by local image fitting energy,” *Pattern Recognition*, vol. 43, no. 4, pp. 1199–1206, 2010.
13. S. Salazar-Colores, J.-M. Ramos-Arreguín, J.-C. Pedraza-Ortega, and J. Rodríguez-Reséndiz, “Efficient single image dehazing by modifying the dark channel prior,” *EURASIP Journal on Image and Video Processing*, vol. 2019, no. 1, p. 66, 2019.
14. F. Azari Nasrabad, H. Hassanpour, and S. Asadi Amiri, “Adaptive image dehazing via improving dark channel prior,” *International Journal of Engineering*, vol. 32, no. 2, pp. 253–259, 2019..
15. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” *International Journal of Computer Vision*, vol. 22, no. 1, pp. 61–79, 1997. [16] X. Yang, G. Zhang, J. Lu, and J. Ma, “A kernel fuzzy c-means clustering based fuzzy support vector machine algorithm for classification problems with outliers or noises,” *IEEE Transactions on Fuzzy Systems*, vol. 19, no. 1, pp. 105–115, 2011.

16. J. Zhang, Z. Lu, and M. Li, "Finger-vein image segmentation based on kfcml and active contour model," in 2019 IEEE Instrumentation and Measurement Technology Conference, IEEE, 2019.
17. G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer, 2002.
18. [19] C. Li, C. Y. Kao, J. C. Gore, and Z. Ding, "Minimization of region scalable fitting energy for image segmentation," IEEE Transactions on Image Processing, vol. 17, no. 10, pp. 1940–1949, 2008.
19. N. A. Mortensen and S. Xiao, "Slow-light enhancement of beer-lambert bouguer absorption," Applied Physics Letters, vol. 90, no. 14, p. 141108, 2007.