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ABSTRACT 

Finger vein recognition's excellent security, internal feature uniqueness, and forgery 

resistance have made it a potential biometric identification method. However, successful vein 

pattern segmentation and augmentation are crucial for obtaining reliable and accurate 

detection. The segmentation and augmentation techniques currently used in finger vein 

recognition systems are thoroughly reviewed in this work. Traditional image processing 

techniques, machine learning algorithms, and new deep learning-based models that enhance 

vein visibility, contrast, and boundary localization are all methodically examined in this 

work. To emphasize their influence on recognition performance, a number of preprocessing 

techniques are also covered, such as region of interest (ROI) extraction, illumination 

correction, and noise reduction. Furthermore, the paper examines the benefits and limits of 

various strategies, focusing on their integration to improve feature quality and recognition 

robustness. The integration of segmentation and improvement techniques to increase the 

accuracy and resilience of finger vein recognition systems is the main goal of this thorough 

review. For precise vein pattern extraction, a variety of segmentation methods are 

investigated, such as thresholding, region-based, and deep learning-based models. 

Additionally included are enhancing techniques like deep learning-based picture 
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augmentation, Gabor filtering, and contrast-limited adaptive histogram equalization. This 

analysis emphasizes the need of integrating segmentation and enhancement algorithms to 

produce excellent recognition performance under a variety of imaging situations by 

examining recent developments and obstacles. Finally, the study discusses current problems, 

such as unpredictability in imaging circumstances, dataset limits, and computational 

complexity, and suggests new research avenues for constructing adaptive, hybrid, and real-

time finger vein detection frameworks. 

 

KEYWORDS: Finger Vein Recognition, Vein Enhancement, Vascular Biometrics, Finger 

Vein Identification And Segmentation. 

 

I.INTRODUCTION 

Finger vein recognition's intrinsic, distinct, and impenetrable characteristics have made it a 

safe and dependable biometric identification method. Finger vein patterns are collected using 

near-infrared (NIR) imaging, which ensures more privacy and resistance to imitation 

compared to exterior features like fingerprints or facial photos. However, attaining high 

recognition accuracy is frequently severely hampered by differences in illumination, finger 

posture, and image quality [1]. Finger vein identification has drawn a lot of interest recently 

as a trustworthy biometric verification method because of its high security, individuality, and 

spoofing resistance. Finger vein patterns are internal, imperceptible to the unaided eye, and 

consistent over the course of a person's life, in contrast to outward biometric characteristics 

like fingerprints or facial features. Finger vein recognition is therefore ideal for use in identity 

verification, banking, and security access control systems. However, the quality of the photos 

taken and the precision of vein pattern extraction play a major role in how well finger vein 

recognition systems work [2]. Variations brought on by poor contrast, motion blur, finger 

misalignment, and uneven illumination can significantly impair recognition performance. 

Segmentation and enhancement are essential preprocessing techniques for finger vein images 

in order to overcome these difficulties. The goal of segmentation techniques is to precisely 

separate the vein patterns in the ROI from the surrounding tissues and background. Modern 

deep learning architectures like U-Net and Attention U-Net, which offer accurate and 

adaptive segmentation, have supplemented traditional techniques like thresholding, 

morphological operations, and region-based segmentation [2]. However, enhancing 

techniques make vein patterns more visible and contrasted, which increases the efficiency of 

feature extraction. Vein pattern clarity has been shown to be significantly improved by 
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techniques like CLAHE (Contrast-Limited Adaptive Histogram Equalization), Gabor 

filtering, and deep learning-based image enhancement algorithms. In the preprocessing phase 

of finger vein recognition, segmentation and augmentation are essential for resolving these 

problems. While enhancement increases image contrast and vein visibility, segmentation 

concentrates on precisely identifying the region of interest (ROI) that houses the vein 

patterns. Combining these two methods makes vein extraction more accurate and increases 

the recognition system's overall resilience. This thorough investigation examines a number of 

conventional and deep learning-based segmentation and enhancement methods, emphasizing 

how well they work together to improve performance in a range of imaging scenarios[3]. The 

paper also covers current developments, obstacles, and potential paths for creating 

trustworthy and effective finger vein recognition systems.  

 

1.1 Progress and Trends in Deep Learning Architectures 

Deep learning research has grown fast over the last decade, altering how machines learn and 

interpret information. The creation of novel architectures has been critical in delivering 

cutting-edge performance across a wide range of applications, including image recognition, 

speech processing, medical diagnostics, and natural language understanding[4]. 

 

Early research concentrated on Convolutional Neural Networks (CNNs), which 

revolutionized computer vision applications by incorporating spatial feature extraction and 

hierarchical learning [5]. Subsequent advances in Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) networks improved their ability to model sequential and 

temporal data, resulting in breakthroughs in speech and text interpretation(7). 

 

As the discipline advanced, researchers began examining ever-more-complex deep learning 

methods to overcome the inherent challenges of medical picture analysis:    

Ensemble Learning: To increase predictive power and robustness, some studies combined 

predictions from multiple CNN models using ensemble learning approaches [4 & 5]. By 

leveraging the diversity of individual models, this strategy reduces the likelihood of over 

fitting and improves overall accuracy. [8]. 

 

The prevalence of Transformer-based architectures, which employ self-attention methods to 

manage long-range dependencies more effectively than RNNs, is highlighted by recent 

research trends [6]. With an emphasis on scalability and generalization, models like BERT, 

GPT, and Vision Transformers (ViT) have raised the bar for both language and vision tasks. 
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In order to automate model design and lessen the need for manual adjustment, researchers are 

also investigating Neural Architecture Search (NAS). In order to facilitate deep learning on 

edge devices, there is also a lot of emphasis on models that are lightweight and energy-

efficient, such as Mobile Net and Efficient Net. Explainable AI (XAI) to improve model 

transparency, multimodal learning to integrate many data sources, and Graph Neural 

Networks (GNNs) for structured data are examples of emerging directions. 

 

When taken as a whole, these patterns show that deep learning architectures are evolving 

toward more resource-efficient, interpretable, and adaptive models that meet the increasing 

needs of practical AI applications. 

 

In order to facilitate deep learning on devices with limited resources, recent research has 

focused on efficient and lightweight architectures such as Mobile Net, Shuffle Net, and 

Efficient Net. Neural Architecture Search (NAS) has also drawn interest due to its ability to 

automate the design process and find the best network topologies.  

 

Deep learning's capacity to manage intricate data structures and multi-modal tasks is further 

enhanced by the emergence of Graph Neural Networks (GNNs) and Vision Transformers 

(ViTs). In order to advance sustainability, privacy, and transparency, explainable AI (XAI), 

energy-efficient computing, and federated learning are also becoming more and more 

important. All things considered, current developments in deep learning architecture design 

show a move toward more responsible, intelligent, and adaptable AI systems that can handle 

problems in the real world. 

 

Together, these methodological and architectural developments enable deep learning to 

continue progress by offering dependable and adaptable solutions to a variety of real-world 

issues.  

 

Healthcare: Deep learning is offering personalized and privacy-preserving healthcare 

solutions, ranging from predictive models to image-based illness diagnostics 

 

1.2 Mitigating the Limitations of Finger Vein Recognition through Advanced Deep Learning 

Methods. 

 

A promising biometric technique for secure personal identification is finger vein recognition, 

which makes use of the distinct vascular patterns under the skin. Nevertheless, the system has 
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a number of drawbacks, such as inferior image quality brought on by changes in blood flow, 

skin thickness, finger orientation, and illumination.  

 

Under these difficult circumstances, it is frequently difficult for conventional image 

processing and machine learning algorithms to extract trustworthy characteristics. Advanced 

deep learning techniques have been developed to address these problems, allowing for better 

vein pattern augmentation, noise reduction, and automatic feature extraction. Convolutional 

Neural Networks (CNNs), U-Net, and attention-based models are examples of deep 

architectures that efficiently capture complex vein structures and improve image clarity, 

resulting in more reliable recognition performance.  

 

Furthermore, the system's capacity to generalize across various users and imaging contexts is 

enhanced by Siamese networks and transfer learning techniques. Deep learning-based 

solutions greatly reduce the drawbacks of conventional methods by combining segmentation, 

augmentation, and classification into a single framework. This leads to improved accuracy, 

versatility, and dependability in finger vein detection systems. 

 

Despite being extremely safe and challenging to create, finger vein recognition is hindered by 

a number of technical issues that compromise its dependability and efficiency. Poor image 

quality, which is frequently brought on by changes in blood flow, finger thickness, and 

illumination during image acquisition, is one of the main difficulties. It is challenging to 

identify distinct vein patterns when there is little difference between the veins and the 

surrounding tissues.  

 

Inconsistencies in the recorded data are also caused by fingers rotating and misaligning while 

scanning. Image clarity is further reduced by noise, blurring, and occlusion brought on by 

skin disorders or sensor limitations. 

 

Conventional image processing techniques are unable to adequately address these issues. 

Deep learning models, on the other hand, have become effective ways to get over these 

obstacles. Deep learning makes it possible for automatic feature extraction, reliable 

segmentation, and adaptive learning in a variety of scenarios by utilizing sophisticated 

architectures including Convolutional Neural Networks (CNNs), Attention U-Nets, and 

Siamese networks.  
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These models solve many of the technical issues that have long hampered accurate finger 

vein detection performance by improving image quality, lowering noise, and increasing 

matching accuracy. 

 

II. SEGMENTATION OF FINGER VEIN IMAGES THROUGH ACTIVE CONTOUR 

MODELS  

Finger vein detection is strongly dependent on correct segmentation of vein patterns from 

collected photos. However, finger vein images frequently suffer from low contrast, noise, 

uneven illumination, and variations in finger posture, making segmentation a difficult process 

[9]. Active contour models (ACMs), also known as snake models, offer a reliable solution by 

growing a curve to meet the boundaries of vein patterns in an image. The model iteratively 

adapts the contour based on picture gradients and energy minimization principles, allowing it 

to cope with complex vein forms and local variations. 

 

In finger vein segmentation, ACMs are very successful at recognizing tiny and curved vein 

features that typical thresholding or edge detection approaches may overlook. Variants 

include gradient-based snakes, region-based snakes, and level set approaches improve 

segmentation accuracy by combining both local and global picture data [10]. Active contour-

based segmentation increases the efficacy of following procedures such as feature extraction, 

matching, and biometric verification because it properly delineates venous structures. 

Overall, ACMs offer a flexible and dependable solution to the issues of finger vein image 

segmentation. 

 

2.1 An Overview of Active Contour Models for Robust Finger Vein Segmentation 

Finger vein recognition is a secure and dependable biometric approach that involves precisely 

extracting vascular patterns from finger photographs. However, these images frequently offer 

problems such as low contrast, noise, uneven illumination, and finger misalignment, 

complicating segmentation. Active Contour Models (ACMs), often known as snakes, are 

frequently utilized to overcome these challenges because they can adapt to intricate and 

curved venous systems [11]. 

 

ACMs work by iteratively developing a contour to minimize an energy function that includes 

internal forces (ensuring the contour's smoothness and continuity) and exterior forces 

(pushing the contour toward image features such as vein borders). Variants include gradient-



International Journal Research Publication Analysis                                    Volume 01, Issue 04 

Copyright@ Vathsala |                                                                                                              Page 7 

based snakes, region-based snakes, and level set techniques improve resilience by combining 

local edge information with global region features.  

 

After segmentation, post-processing techniques such as morphological operations and 

skeletonization are frequently used to modify vein patterns, preparing them for feature 

extraction and matching. 

 

Overall, active contour-based segmentation offers a flexible, adaptable, and accurate solution 

to robust finger vein recognition, improving biometric systems' reliability and performance. 

 

2.2 Function of Active Contour Models in Finger Vein Segmentation 

The major goal of employing Active Contour Models (ACMs) in finger vein segmentation is 

to accurately and reliably extract vascular patterns from finger pictures, which serve as 

unique biometric features for authentication and identification. Finger vein images frequently 

face issues such as low contrast, noise, uneven illumination, finger misalignment, and skin 

imperfections, rendering typical segmentation approaches ineffective. ACMs address these 

issues by offering a flexible and adaptable framework that can accommodate the complicated, 

curved shapes of vein patterns. 

 

2.2.1 Key purposes  

Precise Vein Boundary Detection: ACMs evolve a contour to properly outline vein structures, 

collecting small features required for recognition. Noise and Artifact Handling: By focusing 

on energy reduction, ACMs can limit the impact of noise and irrelevant features, hence 

improving segmentation quality. Adaptability to Variations: ACMs respond dynamically to 

changes in finger position, orientation, and illumination, ensuring consistent segmentation 

across photos. Support for Complex Vein Patterns: Advanced versions such as level set 

methods enable the model to handle branching, splitting, and merging veins more efficiently 

.Improved Recognition Accuracy[12]: By creating clear, continuous vein maps, ACMs 

increase the performance of future steps in biometric systems such as feature extraction and 

matching. 
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III.WORKFLOW OF FINGER VEIN SEGMENTATION PROCESSING  

 

Figure 1. Finger Vein Image Processing Stages. 

 

 

Figure 2: Illustrates the overall process and working stages of a finger vein 

authentication system. 

 

The process begins with a unique sensor that includes an infrared light source and a finger 

guidance device. When the user places a finger on the device, infrared light travels through it. 

Hemoglobin in the blood vessels absorbs light, causing the vein structure to look dark. This 

creates the finger vein appearance [13]. 

 

The cross-sectional figure depicts how transmitted infrared light interacts with veins, while 

the sample image shows a person placing their finger on the sensor for scanning. 
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Finger vein images are recorded and transferred to the authentication system for digital 

processing. 

 

Pattern Extraction: The system extracts and enhances the vein pattern from the collected 

image to produce a clear, binary vein map. 

 

Database Storage: The extracted vein pattern is saved in a finger vein database as a reference 

after user registration. 

 

Matching: When a user attempts authentication, the system compares the new image's pattern 

to the previously stored pattern in the database. 

 

Authentication Result: If the matched data has a high enough similarity score, the identity is 

confirmed and the authentication status is presented as successful. 

 

 

Figure 3: Illustrates the preprocessing workflow of finger vein images. 

 

Resized Finger Vein Pictures: For consistency, the taken pictures are resized to a standard 

images. 
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Segmentation: To separate the area of interest, the finger region is separated from the 

background. 

 

Orientation Correction: By identifying a reference line, the system determines the orientation 

angle and modifies the image alignment to guarantee the finger is positioned correctly. 

 

ROI detection is the process of identifying the Region of Interest (ROI) that contains the 

important vein characteristics. 

 

Geometry Normalization: To ensure consistent size and shape across all samples, the 

extracted ROIs undergo geometric normalization. This creates geometry-normalized ROIs 

that are prepared for feature extraction and matching. 

 

3.1 Block Diagram of Finger Vein Authentication systems operation Processing Stages  

 

 

An authentication system and a special-purpose sensor make up its two primary components. 

An infrared light source that travels through the finger is used by the special-purpose sensor.  

The vein pattern is visible in the photographed image because the haemoglobin in the veins 

absorbs infrared light. Correct placement is guaranteed by a finger guidance unit. 

 

After that, the authentication system receives the taken image of the finger vein and uses 

pattern extraction to create a finger vein pattern. 

 

Through a matching process, this extracted pattern is compared to data that has been saved in 

the finger vein database.  
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Database Storage: During enrolment, the extracted vein patterns are saved for comparison in 

the future in a finger vein database. 

 

Matching and Verification: A freshly recorded pattern is contrasted with pre-stored templates 

during the authentication process. To ascertain the level of similarity, the system matches.  

 

Authentication Result: The system delivers the authentication result, which verifies whether 

or not the identity has been validated, based on the matching score. 

 

Lastly, the system outputs an authentication result (either refused or validated) based on the 

matching result. 

 

3.2 Structural Overview of a Finger Vein Authentication System: Imaging and Image 

Processing Units. 

 

 

Figure 4: Illustrates a finger vein authentication system, divided into two main parts: 

the Imaging Unit and the Image Processing Unit. 

 

The Imaging Unit is responsible for obtaining finger vein images. It employs near-infrared 

(NIR) light sources with a camera or sensor. When a finger is placed on the device, NIR light 

enters the skin and is absorbed by haemoglobin in the blood, revealing the vein patterns [14]. 

The camera then catches the interior vein image without being influenced by the exterior 

skin's texture or colour. 
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The Image Processing Unit improves and analyses collected images for authentication 

purposes. This involves pre-processing (noise removal and contrast improvement), 

segmentation (isolation of vein patterns), feature extraction (identification of unique vein 

properties), and matching (comparison with database templates).  

 

These devices work together to enable accurate, secure, and contactless identification using a 

person's finger's unique vascular patterns. 

 

Original Image of a Finger Vein: The imaging equipment used near-infrared light to capture 

the raw image. Usually, it shows a grayscale picture of a finger with weak veins visible. 

 

Pre-processed image: After performing noise reduction, contrast enhancement, or 

normalization [13 & 14]. The veins become more visible, and background disturbance is 

decreased. 

 

Segmented image: The vein region is extracted from the backdrop using a segmentation 

method such as Active Contour, Thresholding, or U-Net. Only the vein structures are marked, 

while the rest of the finger area is obscured. 

 

Binary/Mask Representation: A binary picture (black and white) with white pixels 

representing veins and black pixels representing background. 

 

Overlay Output: The segmented veins are placed on the original image to show the extraction 

accuracy. 

 

 

Figure 5: Output Signature of Isolated Resultant Pattern. 
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3.3.3. Finger Vein Pattern Enhancement Approaches 

Finger vein pattern enhancement is an important pre-processing method that improves the 

visibility and clarity of vein structures before segmentation and recognition. Finger vein 

photographs frequently have low contrast, inconsistent illumination, and background noise, 

hence enhancing techniques are used to adequately emphasize the vascular patterns [15]. 

Common approaches include histogram-based methods like Histogram Equalization and 

CLAHE, which improve global and local contrast; filtering-based methods like Gabor and 

matched filters, which highlight vein-like line structures; and Retinex-based methods, which 

correct illumination variations and improve brightness consistency.  

 

Morphological techniques like top-hat and bottom-hat transformations are also used to 

highlight narrow vein lines. Deep learning-based techniques, such as Convolutional Neural 

Networks (CNNs) and Generative Adversarial Networks (GANs), have been established in 

recent years to automatically build optimal improvement maps. Some systems also use 

fusion-based methods, which combine several enhancing tactics to produce more robust 

outcomes. Overall, these augmentation strategies increase image quality and assure precise 

extraction of finger vein characteristics, resulting in effective biometric authentication. 

 

3.3.4. Feature Extraction 

A crucial stage in image processing and pattern recognition is feature extraction, which 

creates a simplified representation of an object or pattern by extracting useful information 

from raw data. Feature extraction concentrates on capturing the most crucial elements, such 

as shape, texture, edges, color, or critical spots, rather than using the full image, which could 

contain unnecessary or superfluous details[7 & 8]. For instance, distinctive line patterns, 

ridge orientations, or vein structures that set one person apart from another might be features 

in biometric systems like fingerprint or vein recognition [7]. Convolutional neural networks 

(CNNs) are one method used in computer vision and deep learning that automatically extracts 

features like edges in the first layers and more intricate patterns in the deeper layers. Feature 

extraction boosts the accuracy of classification, recognition.  

 

IV. Integration of Finger Vein Segmentation And Enhancement Process 

The integration of finger vein segmentation and improvement procedures is critical for 

increasing the accuracy and reliability of biometric recognition systems. This integrated 

approach combines enhancement and segmentation to work in tandem, resulting in high-

quality vein extraction even under demanding imaging conditions [16]. The improvement 



International Journal Research Publication Analysis                                    Volume 01, Issue 04 

Copyright@ Vathsala |                                                                                                              Page 14 

procedure begins by improving image contrast, removing noise, and highlighting vein 

structures with techniques such as histogram equalization, Gabor filtering, or Retinex-based 

correction. This gives a crisper image with more defined vein patterns. The segmentation 

procedure then accurately separates these improved vein regions from the backdrop using 

techniques such as active contour models, thresholding, and deep learning networks. By 

merging both processes, the method ensures that the segmentation is performed on a 

corrected image, resulting in better vein pattern extraction and reducing errors caused by poor 

illumination or low contrast. This combination method improves the reliability and precision 

of finger vein authentication systems.  

 

METRICS USED  

The performance of finger vein segmentation and enhancement algorithms is measured using 

a variety of quantitative criteria that consider both image quality and segmentation accuracy. 

Metrics such as Contrast-to-Noise Ratio (CNR), Peak Signal-to-Noise Ratio (PSNR), and 

Structural Similarity Index (SSIM) are frequently used to assess the clarity, contrast 

improvement, and visual quality of improved images. Entropy and intensity statistics (mean 

and standard deviation) are also used to assess the richness of features and brightness 

uniformity following improvement. Accuracy-based metrics are used in segmentation 

methods to determine how well vein segments are retrieved. These include Accuracy, 

Precision, Recall (Sensitivity), F1-Score, Dice Similarity Coefficient (DSC), and Jaccard 

Index (IoU), which assess the overlap and correctness of segmented vein areas to the ground 

truth. In some biometric evaluations, the False Acceptance Rate (FAR) and False Rejection 

Rate (FRR) are also employed to determine recognition reliability. Together, these criteria 

ensure that both the improvement and segmentation processes generate high-quality, 

accurate, and dependable venous pattern extraction for strong finger vein authentication[17].  

 

 

Figure 6: Finger Vein Authentication Framework. 
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The diagram depicts finger vein authentication has the advantage of using in-vivo properties 

for biometric identification, making it more difficult to fabricate or spoof than other biometric 

methods such as fingerprint, facial recognition, or voiceprint. Until now, however, a specific 

picture sensor using infrared light was required to capture finger vein patterns that are barely 

visible to the naked eye. The approach developed currently enables highly precise finger vein 

authentication using the camera inherent into smartphones without a specialized image 

sensor. More specifically, the system can recognize each finger from a colour image of the 

user's hand taken with a camera and correctly extract vein pattern information. Combining 

information from numerous fingers increases authentication accuracy.  

 

V. FUTURE DIRECTIONS AND OPPORTUNITIES 

Future research in finger vein segmentation and augmentation will focus on increasing 

accuracy, adaptability, and real-time performance to strengthen biometric authentication 

systems. Advanced deep learning and hybrid models have intriguing prospects for 

automatically improving image quality and segmenting vein patterns under a variety of 

lighting and skin conditions. The use of multimodal biometrics (finger vein combined with 

fingerprint or palm vein) can improve security and reliability even further [10]. Furthermore, 

lightweight and efficient algorithms are being developed for use in portable or embedded 

devices, allowing real-time computation The use of transformer-based architectures, self-

supervised learning, and explainable AI can result in more robust and transparent systems. 

Future research may also look into 3D vein imaging and cross-device interoperability in order 

to overcome sensor and environment variances. Overall, these trends open up numerous 

prospects for developing more accurate, secure, and user-friendly finger vein recognition 

technology. Finger vein recognition combined with other biometric modalities, such as 

fingerprint or iris recognition, allows for more accurate multimodal authentication. With the 

growth of AI and deep learning, there is an opportunity to create adaptive augmentation and 

segmentation models that perform efficiently in real time [19]. Additionally, lightweight 

algorithms and embedded systems enable deployment in mobile and IoT-based applications. 

Emerging research in 3D vein imaging, cross-sensor matching, and explainable AI broadens 

the scope of innovation, making finger vein recognition a promising solution for future 

biometric security systems. 
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VI.CONCLUSION 

Finger vein enhancement and segmentation are key steps in assuring the accuracy, reliability, 

and resilience of finger vein recognition systems.  The enhancement method improves image 

quality by boosting contrast, lowering noise, and emphasizing vein patterns, and the 

segmentation process accurately separates these patterns from the backdrop for subsequent 

feature extraction.  Together, they lay the groundwork for accurate and efficient biometric 

identification [5].  The incorporation of modern techniques—such as deep learning, Retinex 

models, Gabor filtering, and active contour segmentation—has considerably enhanced the 

performance of these procedures under a variety of illumination and imaging situations.  As 

research progresses, the emphasis on building adaptive, real-time, and intelligent 

enhancement-segmentation frameworks promises to improve recognition accuracy and enable 

more widespread deployment of finger vein systems in secure authentication 

applications[10]. As research advances, there is a strong emphasis on combining deep 

learning architectures such as attention-based and lightweight networks to improve accuracy, 

speed, and robustness in a range of situations. Another exciting opportunity is multimodal 

biometric systems, in which finger vein detection can be combined with other features like 

fingerprints, iris, or face recognition to improve security and minimize spoofing problems. 

With the rise of IoT and edge computing, creating low-power, real-time vein identification 

systems for mobile and wearable devices will open up new avenues for healthcare 

monitoring, financial transactions, and smart access management [16]. Furthermore, research 

into anti-spoofing techniques and privacy-preserving biometric frameworks will be crucial 

for resolving security and ethical concerns. 
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